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1. Introduction

Noncommutative geometry [1 – 4] has become an active area of research in recent years

providing potential new physics due to modifications of the underlying structure of space-

time [5, 6]. Such geometries naturally arise in string theory [7]. A closely related devel-

opment is that of fuzzy physics where finite matrix algebras are used to approximate the

algebra of functions on a manifold. Action functionals built from these matrix algebras pro-

vide an alternative to lattice actions in the regularization of field theories and are especially

natural for field theories on noncommutative spaces. Fuzzy spaces have also been pursued

as potential spaces for the internal space in Kaluza-Klein reductions [8 – 10]. See [11] for a

review of aspects of the fuzzy approach and [12, 13] for noncommutative field theory. The

connection between matrix models and string theory is reviewed in [14] and the relation of

fuzzy geometry to the quantum Hall effect is reviewed in [15].

As a regularization of quantum field theory, the fuzzy approach replaces the infinite

number of degrees of freedom of the Euclidean quantum field with the finite number of

degrees of freedom associated with a direct sum of modules over a finite simple matrix

algebra, where the finite matrix algebra approximates the algebra of functions of the un-

derlying compact Euclidean space. Of course, by Wedderburn’s theorem all simple finite

dimensional matrix algebras over the complex numbers are isomorphic and characterized

only by the matrix dimension, so the geometry must be encoded directly in the action of
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the field theory. For scalar fields, it is the Laplacian that does this and hence, once one has

specified the allowed matrix dimensions and the action for a free scalar field, the fuzzy, and

hence limiting commutative, geometries are determined. In the case of spinor fields, the

relevant operator is the Dirac operator which encodes the spin geometry [1] of the space.

A simple method of constructing a large variety of fuzzy spaces is as coadjoint orbits

of compact Lie groups. In this way, the fuzzy space preserves all the isometries of the

limiting commutative geometry even at the finite level and the commutative geometry is

recovered in the limit of infinite size matrices.1 This is a radical shift from the canonical

lattice regularisation that is already a highly developed tool for quantum field theory. Its

potential advantages are, however, sufficiently promising that it warrants attention in its

own right. The principal advantages arise for models with Fermions, where the Dirac

operators are significantly simpler than their lattice relatives and furthermore the fuzzy

models avoid the difficulties of Fermion doubling [16]. Preliminary numerical studies of

scalar field theories on fuzzy spaces have been performed in [17 – 19, 21, 20]. Fuzzy gauge

fields on S2
F have been discussed by several authors [22 – 24] and on CP

2 in [25]. Recent

numerical studies of such gauge theories can be found in [26] and [27].

The archetypical fuzzy space is the fuzzy sphere [28 – 30], though any manifold which

can be generated as the coadjoint orbit of a compact Lie group should have a fuzzy de-

scription. See Arnlind et al [31] for a fuzzy torus construction not based on coadjoint

orbits.2 Explicit descriptions of fuzzy CP
N , fuzzy unitary Grassmannians and fuzzy com-

plex quadrics already exist [32 – 34]. There are also constructions of “fuzzy” spheres of

dimension greater than two [35, 36] but all of these models involve additional degrees of

freedom and require the introduction of some technique to decouple these modes.

To pin down the geometry, one must focus on the scalar Laplacian (or Dirac operator).

In the literature there exist two distinct prescriptions for the Laplacian on the fuzzy sphere.

The simplest prescription takes the Laplacian as the quadratic Casimir ∆ = L̂aL̂a where

L̂a = [L̂a, ·] and the L̂a are the generators of su(2) in the irreducible representation of

dimension L+1 where L is any positive integer. This Laplacian has a natural generalization

to CP
N , where again the quadratic Casimir of SU(N + 1) in the irreducible representation

corresponding to the matrix size is used. However, in [37] an alternative prescription for the

Laplacian is given in the case of S2
F . Here the Laplacian is given as ∆ = 1

2(K̂−K̂++K̂+K̂−)

in terms of operators (see (2.42) below) K̂− and K̂+ which together with K̂0 satisfy the

su(2) algebra. In the commutative case differential operators corresponding to L̂a are

the right invariant generators of SU(2) on itself, while those corresponding to K̂+, K̂−
and K̂0 are the corresponding generators of the left invariant vector fields. On coset

spaces G/H the left and right invariant generators of G play very different roles: The

right invariant generators act as Lie derivatives while the left invariant generators become

covariant derivatives. In the fuzzy setting this is reflected in the fact that the operator

images of right invariant generators, i.e. L̂a, provide the generators of the adjoint action

of the group G acting on the matrix algebra while the operators K̂+ and K̂− change

1Due to the presence of all the continuous isometries the fuzzy theory is already continuum.
2In this torus example the relevant Laplacian has yet to be constructed.
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the matrix sizes with K̂+ mapping from square (L + 1) × (L + 1) matrices to non-square

(L + 2) × L matrices and K̂− mapping to L × (L + 2) matrices. These latter matrices can

be interpreted as projective modules over the fuzzy sphere and allow one to access line

bundles over the sphere in a very natural way [37]. Also, it is straightforward to construct

the Dirac operator and action functionals for spinors once these operators are known. The

principal goal of this paper will be to give the construction of the corresponding operators

for any complex projective space. We will see that this will involve us in an alternative

construction of CP
N
F , which opens up a variety of possibilities for the addition of structure

to these spaces.

In section 2 we review the construction of both S2
F , and of topologically nontrivial field

configurations on this space and review the construction of the operators K̂±. Along the

way we give a novel construction of polarization tensors for both square and non-square

matrices (see [38] for the standard construction). In section 3 we repeat the construction

for CP
N ending the section with a brief description of noncommutative line bundles over

CP
N . Section 4 introduces composite operators which surprisingly end up obeying the

Heisenberg algebra on an appropriate reduced Fock space. The setting involves a natural

generalization of the Schwinger-Jordan construction to su(n). Section 5 gives the operators

K̂ı and K̂ı̄ that generalize K̂± and map between noncommutative vector bundles and

describes the modules corresponding to these bundles. Section 6 contains our conclusions.

Some technical results needed in the text are obtained in appendices.

2. The fuzzy sphere, S
2
F and its noncommutative line bundles

We begin by focusing on the fuzzy sphere S2
F
∼= CP

1
F using an approach that easily gener-

alizes to other spaces. The generalization to CP
N will be pursued in subsequent sections.

Let aα, α = 1, 2 be a doublet of annihilation operators that annihilate the Fock vacuum

|0〉 and let a†β (the Hermitian conjugate of aβ) be a conjugate pair of creation operators

with the two doublets satisfying the Heisenberg commutation relations3

[aα, aβ] = [a†α, a†β ] = 0 and [aα, a†β] = δα
β . (2.1)

The Fock space F freely generated by the creation operators, a†α, is spanned by the or-

thonormal vectors

|n1, n2〉 =
1√

n1!n2!
(a†1)

n1

(a†2)
n2 |0〉. (2.2)

The Schwinger-Jordan construction then gives operators

N̂ = a†a and L̂a = a†
σa

2
a (2.3)

which satisfy the u(2) algebra

[L̂a, L̂b] = iǫabcL̂c, [L̂a, N̂ ] = 0. (2.4)

3It will be convenient to use the metric δαβ and its inverse δαβ on C
2 to raise and lower indices, so that

aα = δαβaβ. Of course the distinction between upper and lower case indices for su(2) is somewhat trivial

as the representations are unitarily equivalent. However, for later use it will be convenient to maintain a

consistent notation that extends to su(N + 1).
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The raising and lowering operators L̂± = L̂1 ± iL̂2 and L̂0 = L̂3 are explicitly

L̂+ = a†1a
2, L̂− = a†2a

1, L̂0 =
1

2
(a†1a

1 − a†2a
2), (2.5)

and the algebra can equally be written

[L̂0, L̂±] = ±L±, [L̂+, L̂−] = 2L̂0, [N̂ , L̂±] = [N̂ , L̂0] = 0. (2.6)

Since the L̂a commute with N̂ we can decompose F into a direct sum of eigenspaces of N̂

as

F =
∞

M

L=0

FL. (2.7)

The subspace of states FL of the Fock space F is the span of the L + 1 vectors |n1, n2〉
with n1 + n2 = L, i.e.

FL = span{|n1, n2〉 | n1 + n2 = L}. (2.8)

This space is a representation space of the unitary irreducible L + 1 dimensional represen-

tation (spin − L
2 ) of su(2) on which the number operator N̂ and quadratic Casimir L̂aL̂a

take the numerical values L and L
2 (L

2 + 1), respectively.

Equally one can consider the dual Fock space F∗ with vacuum vector 〈0| where 〈0|0〉 =

1 and the restricted dual subspaces F∗
L. The algebra associated with the fuzzy geometry

is realized as the linear span of FL ⊗ F∗
L; it is isomorphic to the algebra of (L + 1)-

dimensional matrices. The norm on the matrix algebra is taken to be the trace norm. Define

L̂a = L̂L
a − L̂R

a , with L̂L
a and −L̂R

a the su(2) generators acting on F and F∗ respectively.

The geometry of the round fuzzy sphere is then fixed by specifying the Laplacian to be

∆ = L̂aL̂a = (L̂aL̂a)
L ⊗ 1 + 1⊗ (L̂aL̂a)

R − 2L̂L
a ⊗ L̂R

a . (2.9)

Let us pause and examine this construction in more detail. Since, for our purposes,

we will not need to diagonalize L̂0 it is more convenient to work in a basis where we do

not distinguish between a†1 and a†2, but rather we will leave the SU(2) symmetry manifest.

Our preferred basis for FL is the set of vectors

|α〉 = |α1, · · · , αL〉 =
1√
L!

a†α1
· · · a†αL

|0〉 , (2.10)

which satisfy the orthogonality relation

〈β|α〉 = Sβα = Sβ
α (2.11)

or more explicitly

〈β1, · · · , βL|α1, · · · , αL〉 = Sβ1...βL
α1···αL

=
1

L!
δβ1

{α1
. . . δβL

αL} (2.12)

where Sβ1...βL
α1···αL

is the projector onto totally symmetric tensors.

A basis for the finite dimensional algebra is provided by a pairing of vectors from FL

and F∗
L of the form {|α〉〈β|} and we denote the space spanned by this basis as F ⊗ F∗

F ⊗ F∗ = span{|α〉〈β|}. (2.13)
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A general matrix is then given by

M =
1

L!
Mα1···αL

β1···βL
a†α1

· · · a†αL
|0〉 〈0 | aβ1 · · · aβL = Mα

β|α〉〈β| . (2.14)

The Laplacian is represented as in (2.9) where, in terms of raising and lowering operators,

we have:

L̂±M = [L̂±,M], L̂0M = [L̂0,M]. (2.15)

In particular the matrix

1 = |α〉〈α| = |α1, · · ·αL〉〈α1, · · ·αL| (2.16)

is easily seen to be in the kernel of L̂± and L̂0 and represents the unit operator. Taking

the trace, we have

〈α|α〉 := 〈α1, · · ·αL|αL, · · ·α1〉 = L + 1 (2.17)

the dimension of the matrix algebra. It is further useful to introduce the notation

|αl,γL−l〉〈γL−l,βl| = |α1, · · · , αl, γl+1, · · · , γL〉〈γL, · · · , γl+1, βl, · · · β1| (2.18)

for basis elements where the L − l indices γL−l are contracted.

The different eigenspaces of the Laplacian provide the polarization tensors Yαl

βl with

l = 0 . . . L, where all remaining contractions between αl and βl have been removed. These

are easily constructed by Gram-Schmidt orthogonalization. The polarization tensors then

satisfy

(Yαl

βl)
†
= Yβl

αl and
Tr

L + 1
(Yαl

βlYσl′
τl′ ) = δll′Pαl,σl′

βl,τl′ (2.19)

where Pαl,σl′
βl,τl′ is the projector onto symmetric traceless tensors, i.e. it removes all traces

between αl and βl in (2.18). For example

Y = 1, Yα
β =

√
6L

L + 2

(
|α,γL−1〉〈β,γL−1| −

1

2
δα

β1

)
(2.20)

and the polarization tensor, Yαl

βl , for angular momentum l has free indices αl and βl

with eigenvalue l(l + 1) for the Laplacian (2.9), i.e.

L̂2Yαl

βl = l(l + 1)Yαl

βl . (2.21)

The construction has a very clean group theoretical meaning: The decomposition into po-

larization tensors is the decomposition of the tensor product representation into irreducible

representations and is expressed in Young diagrams as

L︷ ︸︸ ︷
·· ⊗

L︷ ︸︸ ︷
·· = 1⊕ ⊕ · · · ⊕

2l︷ ︸︸ ︷
·· ·· ⊕ · · · ⊕

2L︷ ︸︸ ︷
·· ·· . (2.22)

We see that increasing L by one adds one additional multiplet to (2.22). Our complete set

of polarization tensors is

Yαl

βl =

√
L + 1√
Q(l, L)

Pαl,σl

βl,τl |τl,γL−l〉〈σl,γL−l| , (2.23)
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where Pαl,σl

βl,τl is the projector onto the irreducible representation

2l︷ ︸︸ ︷
·· ·· , (2.24)

i.e. it removes all traces associated with contractions of the free indices of FL and F∗
L. The

coefficient Q(l, L) in the normalization arises due to the contracted oscillators. With l = L

before the application of the projector Pαl,σl

βl,τl there are no contracted oscillators and

the normalizations obtained from (2.19) is
√

L + 1 so Q(L,L) = 1.

The more general normalization can be obtained by observing that the contraction over

the L − l indices γL−l corresponds to the repeated embedding of a matrix with angular

momentum cutoff k into a matrix with cutoff k + 1 by adding contracted oscillators, the

operation being repeated from k = l + 1 up to k = L. Thus for M ∈ Matk+1,

a†γk+1
Maγk+1 ∈ Matk+2 (2.25)

and we see from the above discussion that the polarization tensor content has not changed so

an embedded matrix still has angular momentum only up to k; the top angular momentum

l = k + 1 is naturally absent. Now if we rewrite (2.9) we obtain the relations:

a†αaβMa†βaα =
(
N̂(N̂ + 1) − L̂2

)
M and

aαa†βMaβa†α =
(
(N̂ + 1)(N̂ + 2) − L̂2

)
M , (2.26)

where we used [N̂ ,M] = 0. In the first expression in (2.26) the matrix M is reduced before

being re-embedded thus projecting out the top multiplet with l = k from the spectrum of

the Laplacian L̂2, while in the second the matrix M is embedded before being reduced.

From these and the fact that only one multiplet is added by increasing the cutoff by one

we can deduce that the eigenvalues of L̂2 are l(l + 1). Also the factor Q(l, L) in the

normalization of polarization tensors is obtained from (2.19) and given by

Q(l, L) =
(l!)2

(2l + 1)!

(L − l)!(L + l + 1)!

(L!)2
, (2.27)

with Q(L,L) = 1.

It is now easy to relate this formulation to one in terms of functions. A given matrix

M ∈ MatL+1 can be expanded in polarization tensors,

M =

L∑

l=0

Mαl
βl

Yαl

βl . (2.28)

Define the symmetric symbol density as the matrix ρL(z̄, z)

ρL(z̄, z) =
L∑

l=0

Yβl

αl(z̄, z)Yαl

βl (2.29)
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where

Yβl

αl(z̄, z) =

√
(2l + 1)!

l!
Pβl,σl

αl,τl z̄τ1 . . . z̄τl
zσ1 . . . zσl (2.30)

are the ordinary spherical harmonics in a spinorial basis normalized such that

1

Vol(S2)

∫

S2

ω (Yβl

αlYτl′
σl′ ) = δll′Pβl,τl′

αl,σl′ , (2.31)

with ω the volume form and z̄αzα = 1.

Then the trace

M(z̄, z) =
Tr

L + 1
(ρL(z̄, z)M) (2.32)

gives a function on S2 whose expansion in spherical harmonics has the same coefficients as

the coefficients of the matrix in terms of the polarization tensors. We can approximate a

function f(z̄, z) ∈ C∞(S2) by the matrix

Mf =
1

Vol(S2)

∫

S2

ωρLf , (2.33)

which is a matrix whose coefficients in an expansion in polarization tensors coincides with

f up to angular momentum L and all higher coefficients are projected to zero. If one

substitutes the function M(z̄, z) obtained from M in (2.32) into (2.33) one recovers the

matrix M.

An equally good map to functions is provided by4 the diagonal coherent state map [39]

ML(z̄, z) = 〈z, L|M|L, z〉 , (2.34)

where we have taken the trace of

|z, L〉〈L, z| :=
1

L!
(zαa†α)

L|0〉〈0|(z̄βaβ)
L

(2.35)

=
L∑

l=0

T
1/2
L (l)

L + 1
Yβl

αl(z̄, z)Yαl

βl ,

which effects the simple replacement aα → zα, a†α → z̄α in (2.14) and the removal of 1/L!.

The principal difference in the two maps to functions (2.29) and (2.35) is the presence

in the latter of the coefficients

TL(l) =
L!(L + 1)!

(L − l)!(L + l + 1)!
=

(
1 − l(l + 1)

L(L + 1)

)−1

TL−1(l) , (2.36)

which alter the coefficients in the expansion of a function from those in the expansion of

the corresponding matrix. Note that for L → ∞ with l fixed TL(l) → 1 so the distortion

disappears as L → ∞. The image functions ML and M are related by

ML(z̄, z) = T 1/2
L (L2)M(z̄, z) , (2.37)

4The conventions here are set by noting that for L = 1 we have D
1

2

α, 1

2

(z, z̄) = zα and |z, 1〉 = zα|α〉 =

zαa†
α|0〉 = (z̄αaα)†|0〉, where Dj

m1,m2
(g) are the Wigner D-matrices for SU(2), and on the entire Fock space,

F , coherent states are defined as eigenvectors of the annihilation operator.
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where the rotationally invariant operator TL(L2) has eigenvalues TL(l) [28, 40, 41]. The

principal advantage of the coherent state map is the simplicity of the associated *-

product [32, 42]. In contrast that induced by (2.29) is more complicated but its leading

term in a large L expansion is the Poisson bracket, i.e. the symmetric part of the *-product

vanishes in the leading term.

There is an alternative set of operators L̃± to those in (2.15) obtained by interchanging

both the roles of left and right and + and − to obtain new operators:

L̃±M = −[L̂∓,M], L̃0M = −[L̂0,M] . (2.38)

These generators can be induced naturally by observing that the set of states is unchanged

by transforming to the oscillators

aα := aβǫβα ≡ aα , (2.39)

i.e. substituting a1 → −a2 and a2 → a1. The set a†α generate precisely the same matrix

algebra and with this substitution, we have

L̃+ = (a1)
†a2 = −a†2a

1 = −L̂−,

L̃− = (a2)
†a1 = −a†1a

2 = −L̂+ (2.40)

L̃0 =
1

2
((a1)

†a1 − (a2)
†a2) =

1

2
(a†2a

2 − a†1a
1) = −L̂0

and L̃2 = L̂2 so the resulting Laplacian is however unchanged. This reflects the fact

complex conjugating a representation gives a unitarily equivalent one for su(2).

There is yet a further realization of the Laplacian. This was first given in [37] in terms

of the operators:5

K̂+ := (a†α)
L
((a†)

α
)
R

: FL ⊗F∗
L 7−→ FL+1 ⊗F∗

L−1

K̂− := (aα)L(aα)R : FL ⊗F∗
L 7−→ FL−1 ⊗F∗

L+1

K̂0 := 1
2 (N̂L − N̂R) : FL ⊗F∗

L 7−→ 0

(2.41)

where the L and R superscripts indicate that the operators act on the left or right, i.e. on

FL or F∗
L, respectively.

Note: These operators do not require that the left and right truncated Fock spaces

have the same dimension, more generally, they act on bimodules of the form FnL
⊗ F∗

nR

which represent non-square matrices which are left modules for the algebra MatnL+1 and

right modules for MatnR+1. For our purposes, it is convenient to denote such a generic

element of a left module of MatL+1 by Mq, where Mq ∈ FL ⊗F∗
L−q and we have

K̂+Mq = ǫαβa†βMqa
†
α ,

K̂−Mq = ǫαβaβMqa
α , (2.42)

K̂0Mq =
1

2
[N̂ ,Mq] =

q

2
Mq.

5One can multiply both K̂+ and K̂− by opposite phases to get equivalent operators.
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We see that K̂+ and K̂− change the module structure as in (2.41) while K̂0 measures the

non-squareness of a given bimodule and in particular, the matrix algebra can be identified

with the kernel of K̂0 (i.e. with q = 0, M ∈ MatL+1 is in the kernel of K̂0). Repeated

applications of K̂± map us further along the sequence of modules.

Although K̂+ and K̂− take us out of the algebra of square matrices the products K̂+K̂−
and K̂−K̂+ do not. In general, one obtains

K̂+K̂−Mq = N̂Mq(N̂ + 1) − a†αaβMqa
†
βaα (2.43)

K̂−K̂+Mq = (N̂ + 1)MqN̂ − a†αaβMqa
†
βaα

and the operators K̂± and K̂0 are easily seen to satisfy the su(2) commutation relations.

Similar manipulations for the Laplacian (2.9) acting on Mq yield

L̂2Mq =

(
L − q

2

)(
L − q

2
+ 1

)
Mq − a†αaβMqa

†
βaα. (2.44)

Furthermore, we have

K̂2Mq =
1

2

(
K̂−K̂+ + K̂+K̂− + 2K̂2

0

)
Mq (2.45)

=

(
L − q

2

)(
L − q

2
+ 1

)
Mq − a†αaβMqa

†
βaα.

Hence the potential Laplacians L̂2, L̃2 and K̂2 are all equal and we are left with a unique

option for the round Laplacian ∆ = L̂2 = K̂2 on S2
F given by (2.44).

As pointed out in [37] these latter non-square matrices capture topologically nontrivial

field configurations on the fuzzy sphere and can be taken to be the noncommutative versions

of holomorphic line bundles, with the eigenvalue of K̂0 given by q/2 and q counting the

winding number, so that q > 0 describe O(q) bundles and q < 0 describe O(−q) bundles.

The Laplacian for these line bundles is naturally given by (2.45) while that based on the

construction given in [43 – 46] is more cumbersome.

The generalization of (2.28) to non-square matrices6 Mq is given by

Mq =

L−q∑

l=0

Mαl+q
βl

Dαl+q

βl (2.46)

and Dαl+q

βl are the polarization tensors of spin− (l+ q
2) which are obtained by projection

onto the relevant representation in the decomposition of FL ⊗F∗
nR

where nR = L − q, i.e.

Dαl+q

βl =

√
nR + 1√

Q(l, q, L)
Pαl+q,σl

βl,τl+q |τl+q,γnR−l〉〈σl,γnR−l| (2.47)

as in (2.23) above and normalized such that

1

nR + 1
Tr

(
(Dαl+q

βl)
†
Dσl′+q′

τl′

)
= δll′δqq′Pβl,σl+q

αl+q,τl (2.48)

6Polarization tensors for non-square matrices in the standard basis were constructed by Prešnajder in [38]

and are readily related to those we present.
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and

Q(l, q, L) =
l!(l + q)!

(2l + 1 + q)!

(L − q − l)!(L + l + 1)!

(L − q)!L!
. (2.49)

The Laplacian ∆ is diagonal on the polarization tensors and we have

∆Dαl+q

βl =

(
l +

q

2

)(
l +

q

2
+ 1

)
Dαl+q

βl , with l = 0, . . . L − q . (2.50)

The symbol density analogous to (2.29) which now provides a map to equivariant

sections of line bundles over S2 is

ρL,q(z̄, z) =

L−q∑

l=0

Dβl+q

αl(z̄, z)(Dβl+q

αl)† =

L−q∑

l=0

Dβl+q

αl(z̄, z)Dαl

βl+q , (2.51)

where

Dαl+q

βl(z̄, z) =

√
(2l + 1 + q)!

l!(l + q)!
Pαl+q,σl

βl,τl+q z̄τ1 . . . z̄τl+q
zσ1 . . . zσl ≡ D

j
m, q

2

(z, z̄) (2.52)

with j = l + q
2 and Dj

m,s(z, z̄) are the Wigner D-matrices.

The relevant coherent state map for matrices Mq is provided by

|z, nR〉〈nL, z| :=
1√

nR!nL!
(zαa†α)

nR |0〉〈0|(z̄αaα)nL

=

nR∑

l=0

T
1/2
L (l, q)

nR + 1
Dβl+q

αl(z̄, z)(Dβl+q

αl)† (2.53)

where nL = L and nR = L − q and

TL(l, q) =
L!(L − q + 1)!

(L − q − l)!(L + l + 1)!
. (2.54)

If we use the diagonal coherent state map (2.53) it is easy to establish the correspon-

dence

(
1√
N̂

a†α

)L

7−→ z̄α

(
aα

√
N̂

)L

7−→ ∂

∂z̄ α

(
aα 1√

N̂

)R

7−→ zα

(√
N̂a†α

)R

7−→ ∂

∂z
α .

The presence of
√

N̂ in these expressions takes care of the normalization of the states.

Now that we have mapped matrices to functions and non-square matrices to equivariant

sections of monopole bundles we are in a position to map the various differential operators

and the Laplacian to their commutative analogues. However, for our later discussion it is

useful to pause and make a small digression back to the commutative setting and review

the relevant operators there.
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Using the identification induced by (2.55) and the operators identified in appendix A

we have

L̂L
+ = (a†1a

2)
L 7−→ z̄1

∂

∂z̄2
= −L̄− , L̂R

+ = (a†1a
2)

R 7−→ z2 ∂

∂z1
= −L+ , (2.55)

L̂L
− = (a†2a

1)
L 7−→ z̄2

∂

∂z̄1
= −L̄+ , L̂R

− = (a†2a
1)

R 7−→ z1 ∂

∂z2
= −L− , (2.56)

L̂L
0 =

1

2

(
(a†1a

1)
L − (a†2a

2)
L
)
7−→ 1

2

(
z̄1

∂

∂z̄1
− z̄2

∂

∂z̄2

)
= −L̄0 , (2.57)

L̂R
0 =

1

2

(
(a†1a

1)
R − (a†2a

2)
R
)
7−→ 1

2

(
z1 ∂

∂z1
− z2 ∂

∂z2

)
= −L0 . (2.58)

so the operators L̂a map to the right invariant vector fields La as:

L̂+ 7−→ L+ = L+ − L̄− , L̂− 7−→ L− = L− − L̄+ , L̂0 7−→ L0 = L0 − L̄0 . (2.59)

Similarly using the coherent state map (2.53) and eq. (A.10) we find

K̂+ 7−→ −
√

L + 1

L − q
R− , K̂− 7−→ −

√
L − q + 1

L
R+ , K̂0 7−→ −R0 , (2.60)

where the normalizations on the right do not affect the su(2) commutation relations. These

factors are harmless and could be removed by replacing

K̂+ 7−→ 1√
N̂L

K̂+

√
N̂R and K̂− 7−→ 1√

N̂R
K̂−

√
N̂L . (2.61)

and K̂0 is unaffected. Finally with the above, we have of course ∆ 7−→ −∇2.

We could alternatively have built our map to functions using a†α, i.e. via

| z̄, nR 〉 〈z, nL | =
1√

nR!nL!
(z̄αa†α)nR |0〉 〈0 | (zαaα)nL . (2.62)

This would end up in replacing z by z̄, or equivalently replacing M with M† in the map

between matrices and functions.

A principal result of this paper is the generalization of the operators K̂± to the case of

CP
N and we will see that it will give us access to projective modules that correspond to the

algebra of functions tensored with holomorphic line bundles and complex vector bundles

over CP
N .

3. Fock space construction of CPN
F

The above discussion is very easily adapted to CP
N by considering aα, a multiplet of N +1

oscillators. In this case the construction analogous to (2.3) and (2.4) gives the u(N + 1)

algebra based on the operators

N̂ = a†a, and L̂a = a†
λa

2
a (3.1)
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where λa are the Gell-Mann matrices7 of SU(N +1) with a running from 1 to (N +1)2 −1.

We can again decompose the Fock space, F , generated freely by a†α, into a direct sum

of finite dimensional spaces FL carrying the irreducible representation corresponding to

L-fold symmetric tensor product of the fundamental of su(N +1), which we labeled by the

eigenvalue of N̂ .

We similarly define states spanning FL to be

|α1, · · ·αL〉 =
1√
L!

a†α1
· · · a†αL

|0〉. (3.3)

The unit matrix is represented by

1 = |α1, · · ·αL〉〈α1, · · ·αL| (3.4)

and has trace

〈α1, · · ·αL|α1, · · ·αL〉 = dN (L) =
(N + L)!

N !L!
, (3.5)

where dN (L) is the dimension of the L-fold symmetric tensor product representation of

SU(N + 1). A generic matrix M is as in the case of S2
F given by

M =
1

L!
Mα1···αL

β1···βL
a†α1

· · · a†αL
|0〉 〈0 | aβ1 · · · aβL . (3.6)

The geometry of CP
N
F can then be specified by building the derivatives L̂a, as we did

for S2
F , from the commutator action

L̂aM = [L̂a,M], where L̂a = a†
λa

2
a (3.7)

with a running from 1 to (N + 1)2 − 1. The Laplacian given by the quadratic Casimir

∆ = L̂aL̂a, can be expressed in the form (2.44) as

L̂2M =
(
L(L + N)M− a†αaβMa†βaα

)
. (3.8)

This is easily obtained using

(λa)αβ(λa)µν = 2δανδµβ − 2

N + 1
δαβδµν , (3.9)

yielding

2L̂L
a ⊗ L̂R

a = (a†αaβ)
L ⊗ (a†βaα)

R − N̂L ⊗ N̂R

N + 1
(3.10)

and

Ĉ2 = L̂L
a L̂L

a =
N

2(N + 1)
N̂(N̂ + N + 1). (3.11)

7In our conventions the Gell-Mann matrices in the anti-fundamental are denoted λa and given by

(λa)
αβ

= −(λa)
βα

. (3.2)
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More generally, we can write

L̂2 = Ĉ2 ⊗ 1 + 1 ⊗ Ĉ2 +
N̂ ⊗ N̂

N + 1
− (a†αaβ) ⊗ (a†βaα) . (3.12)

From this we see the analogues of (2.26) become

a†αaβMa†βaα =
(
L(L + N) − L̂2

)
M (3.13)

aαa†βMaβa†α =
(
(L + 1)(L + 1 + N) − L̂2

)
M .

As in the case of S2
F the polarization tensors are given by the decomposition of the

tensor product FL ⊗F∗
L, but now into irreducible representations of su(N + 1). Since FL

and F∗
L carry the L-fold symmetric tensor product representations of the fundamental and

anti-fundamental of su(N + 1), respectively, the relevant group theory decomposition is

L︷ ︸︸ ︷
·· ⊗

L︷ ︸︸ ︷
··

·· ·· ··
··

= 1 ⊕ ·· · · · ⊕

2L︷ ︸︸ ︷
·· ··

·· ·· ··
··

(3.14)

and the decomposition into polarization tensors is a realization of this decomposition where

the polarization tensors with 2l-free indices denoted Yαl

βl . In analogy with (2.23), the

Yαl

βl for fuzzy CP
N are given by

Yαl

βl =

√
dN (L)√

QN (l, L)
Pαl,σl

βl,τl |τl,γL−l〉〈σl,γL−l| (3.15)

where

QN (l, L) =

(
l!

L!

)2 (L − l)!(L + l + N)!

(2l + N)!
(3.16)

and Pαl,σl

βl,τl is the projector onto the representation

2l︷ ︸︸ ︷
·· ··

·· ·· ··
··

. (3.17)

The projector removes all traces corresponding to the lower dimensional representations

in (3.14).

Explicitly, Y = 1 for l = 0 and for l = 1 we have:

Yα
β =

√
(N + 1)(N + 2)L

L + N + 1

(
|α,γL−1〉〈β,γL−1| −

1

N + 1
δα

β1

)
. (3.18)

The decomposition of a matrix M ∈ MatdN(L) in terms of polarization tensors is as

before

M =
L∑

l=0

Mαl
βl

Yαl

βl (3.19)
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and the map to functions given by

M(z̄, z) =
Tr

dN (L)
(ρL(z̄, z)M) (3.20)

with the symmetric symbol density, ρL(z̄, z), given by

ρL(z̄, z) =
L∑

l=0

Yβl

αl(z̄, z)Yαl

βl (3.21)

and the normalizations are the generalization to CP
N of (2.19) and (2.31), i.e.

Tr

dN (L)
(Yβl

αlYτl′
σl′ ) = δll′Pβl,τl′

αl,σl′ (3.22)

and
1

Vol(CPN ))

∫

CPN

ωN (Yβl

αlYτl′
σl′ ) = δll′Pβl,τl′

αl,σl′ , (3.23)

where ωN is the volume form on CP
N and

Yβl

αl(z̄, z) =

√
(2l + N)!

l!
√

N !
Pβl,σl

αl,τl z̄τ1 . . . z̄τl
zσ1 . . . zσl . (3.24)

Conversely, the function f(z̄, z) ∈ C∞(CP
N ) is approximated by the matrix

Mf =
1

Vol(CPN)

∫

CPN

ωNρLf . (3.25)

Mapping Mf in (3.25) back to functions using (3.19) will result in an approximation to the

function f where the coefficients of all representations of SU(N + 1), in f , that lie above

the cutoff representation of dimension dN (L) are projected to zero.

Again the corresponding coherent state is provided by

|z, L〉〈L, z| =

L∑

l=0

T
1/2
L (l,N)

dN (L)
Yβl

αl(z̄, z)Yαl

βl (3.26)

=
1

L!
(zαa†α)

L|0〉〈0|(z̄αaα)L .

With (3.13), the eigenvalues of the SU(N + 1) invariant operator TL(L2, N) generaliz-

ing (2.37) to the case of CP
N are found to be

TL(l,N) =
L!(L + N)!

(L − l)!(L + l + N)!
. (3.27)

More generally, for non-square matrices FL ⊗F∗
L−q the relevant group theory decom-

position is given by

L︷ ︸︸ ︷
·· ·· ⊗

L−q︷ ︸︸ ︷
··

·· ·· ··
··

=

q︷ ︸︸ ︷
·· ⊕

q+2︷ ︸︸ ︷
··

·· · · · ⊕

2L−q︷ ︸︸ ︷
·· ·· ··

·· ·· ··
··

(3.28)
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which in terms of Dynkin indices reads

(L, . . . , 0, 0) ⊗ (0, 0, . . . , L − q) =
L−q
M

l=0

(l + q, 0, . . . , 0, l) . (3.29)

Observe that increasing the cutoff L by one adds just one additional representation. Then

using (3.12) we have, for the Mq ∈ FL ⊗F∗
L−q,

a†αaβMqa
†
βaα =

(
C2(N + 1, L, L − q) − L̂2

)
Mq (3.30)

aαa†βMqa
βa†α =

(
C2(N + 1, L + 1, L + 1 − q) − L̂2

)
Mq ,

where

C2(N + 1, nL, nR) =
1

2
(nL(nR + N) + nR(nL + N)) +

N

2(N + 1)
(nL − nR)2 . (3.31)

The operator aβL
a†β

R
involves the reduction of the cutoff by one and so projects out

the top representation in (3.28). The matrix is subsequently re-embedded using a†α
L⊗aαR.

Hence C2(N + 1, nL, nR) is the eigenvalue of the quadratic Casimir of su(N + 1) on the

representation (L, 0, . . . , 0, L − q) and therefore, since increasing the cutoff L by one adds

just one new representation to the decomposition of FL ⊗ F∗
L−q, the eigenvalues of the

Laplacian L̂2 are given by C2(N + 1, l + q, l) for l = 0, . . . , L− q. More explicitly, a general

matrix Mq is expanded as in (2.46), where the D-polarization tensors form a basis for

eigenvalues of the Laplacian, i.e.

L̂2Dαl+q

βl =
1

2

(
(l + q)(l + N) + l(l + q + N) +

Nq2

N + 1

)
Dαl+q

βl , (3.32)

for l = 0, . . . , nR (and nR = L − q) and are given by

Dαl+q

βl =

√
dN (nR)√

QN (l, q, L)
Pαl+q ,σl

βl,τl+q |τl+q,γnR−l〉〈σl,γnR−l| , (3.33)

which generalizes (2.47) and they are normalized such that

1

dN (nR)
Tr

(
(Dαl+q

βl)
†
Dσl′+q′

τl′

)
= δll′δqq′Pβl,σl+q

αl+q,τl (3.34)

and

QN (l, q, L) =
l!(l + q)!

(2l + N + q)!

(L − q − l)!(L + l + N)!

(L − q)!L!
. (3.35)

One can similarly generalize (2.51) and (2.53) with

|z, nR〉〈nL, z| =
T 1/2

L,q (L̂2, N)

dN (nR)
ρL,q(z̄, z) (3.36)

and now the operator TL,q(L̂2, N) has eigenvalues

TL(l, q,N) =
dN (nR)RN (l, q)

QN (l, q, L)
=

L!(nR + N)!

(nR − l)!(L + l + N)!
, (3.37)

where

RN (l, q) =
N !l!(l + q)!

(2l + N + q)!
(3.38)

provide the coefficients in the CP
N generalization of (2.52).
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4. Pseudo creation and annihilation operators

We would now like to obtain the generalization of the operators K̂± for CP
N . To this end

we observe that the natural generalization of aα = aα = aβǫβα introduced in (2.39) for

su(2) is obtained by using the ǫ-tensor of su(N + 1) contracted with N oscillators. For

this to be non-zero all of the oscillators need to be distinct and hence we need to introduce

N sets of oscillators a(i)α, with i = 1, . . . N . The construction will then naturally lead to

dualization of the representations that occurred earlier. To avoid this we will use a set of

oscillators aı
α which when combined via the ǫ-tensor will give an N -oscillator composite

operator, Aα with the same transformation properties as the aα of the earlier section. By

this route, the construction leads naturally to aα 7−→ Aα and we will have merely replaced

our single oscillator by a composite one. We begin with the composite operators

Ãα = Ãα =
1

N !
ǫαθ1···θN

ǫı1···ıN aı1
θ1
· · · aıN

θN
(4.1)

and
(
Ãα

)†
= Ã†

α :=
1

N !
ǫı1···ıN ǫαθ1···θN

(a†)θ1
ı1 · · · (a†)θN

ıN
, (4.2)

with αi, βj = 1, . . . , N + 1. Note that Ãα reduces to (2.39) for the fuzzy sphere.

Consider the Fock space generated freely by the subset of N(N + 1) oscillators a†
α
ı =

(aı
α)†, which we denote FTotal. These oscillators carry the anti-fundamental representation

of u(N + 1) and the fundamental representation of u(N), with u(N + 1) generators

Ĵα
β = a†

α
ı aı

β (4.3)

and u(N) generators

Ĵ 
ı = a†

α
ı a

α . (4.4)

These have the common u(1) generator

N̂ = a†
α
ı aı

α . (4.5)

The generators of u(N), u(N + 1) and u(1) mutually commute, so the Fock space FTotal

carries a representation of su(N+1)×su(N)×U(1) and we can decompose it into irreducible

representations of these groups. Fixing on an eigenvalue of N̂ fixes the total number of

oscillators and we obtain the space FTotal
n . Due to the fact that all oscillators are identical

this space carries the symmetric representation of su(N(N + 1)) and when decomposed

under su(N) × su(N + 1) gives a direct sum of representations. There are no branching

multiplicities in this decomposition due to the interchangability of the identical oscillators.

Furthermore, the su(N) representation is sufficient to identify the spaces arising in the

decomposition. When the total occupation number is NL the subspace FTotal
n contains

one unique su(n) singlet corresponding to L copies of Ã†
α acting on the Fock vacuum and

transforming under the L-fold symmetric tensor product representation of su(N + 1). The

subspace generated freely by the Ã†
α, we again denote by F and refer to as the reduced
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Fock space, it naturally decomposes into a direct sum of subspaces with fixed eigenvalue,

L, of the “reduced number operator”

N̂ =
1

N
(a†)

α

ı aı
α =

N̂

N
(4.6)

so that

F =
∞

M

L=0

FL. (4.7)

and N̂ counts the number of Ã†
α acting on the Fock space vacuum. These subspaces are

isomorphic to those introduced in section 3.

The reduced Fock space is orthogonal to the remainder so that we have

FTotal = F ⊕ F⊥ . (4.8)

The space F⊥ can further be decomposed under su(N) with the leading representation the

anti-fundamental of su(N), carried by the index ı on a single oscillator a†
α
ı . In summary

we can decompose FTotal as

FTotal = ⊕RFR , (4.9)

where the sum is over all irreducible representations R of u(N), and due to the fact that

all oscillators are identical under u(N(N + 1)), each representation occurs precisely once

in the decomposition.

The construction described here carries over to one based on oscillators (a†)
α
I carrying

representations of u(N + 1) and u(k) with k ≤ N . The resulting Fock space is then

decomposed as in (4.9) with the sum over irreducible representations of u(k) and again

there are no multiplicities as the symmetric representations of u((N +1)k) break up into a

direct sum of representations of u(N +1)⊗u(k) without degeneracy and the decomposition

can be labeled by the representations of u(k), the smaller group.

Given that we have identified the spaces FL, then F ⊗F∗ provides the matrix algebra.

The principal distinction is that now a composite oscillator plays the role of the single

oscillator. However, for N ≥ 2, the Ã†
α and Ãα do not satisfy the Heisenberg algebra, e.g.

for N = 2

[Ãβ, Ã†
α] = 2δα

β
(
1 + N̂

)
− (a†)βı aı

α = 2δα
β

(
1 + N̂

)
− Ĵβ

α (4.10)

with

N̂ :=
1

2
(a†)δı a

ı
δ . (4.11)

However, as we will see, it is straightforward to modify Ãα and Ã†
α to get a more suitable

algebra, where they do satisfy the Heisenberg algebra on a reduced Fock space generated

by the Ã†
α. We shall refer to A†

α and Aα as pseudo creation and pseudo annihilation

operators and the subspace of the full Fock space spanned by |α〉 is what we have termed

the reduced Fock space. Note: The reduced Fock space is the same as the full Fock space

only for N = 1.

Let us examine the action of Ãα on FL. Define

|α̃〉 :=
1

L!
Ã†

α1
· · · Ã†

αL
|0〉 (4.12)
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and

| α̃k 〉 :=
1

(L − 1)!
Ã†

α1
· · · Ã†

αk−1
Ã†

αk+1
Ã†

αL
|0〉 (4.13)

where α = (α1, . . . , αL) and αk = (α1, . . . , αk−1, αk+1, . . . , αL). Then (see appendix C) for

L ≥ 1,

Ãβ |α̃〉 = cN (L)
L∑

i=1

δβ
αi
|α̃i 〉 (4.14)

with

cN (L) =
(N + L − 1)!

L!
. (4.15)

This suggests re-normalizing Ãα:

Ãα −→ Aα := Ãα 1√
cN (N̂ )

Ã†
α −→ A†

α :=
1√

cN (N̂ )
Ã†

α , (4.16)

so that

Aβ |α〉 =

l∑

i=1

δβ
αi

|αi 〉 (4.17)

and

[Aα, A†
β] |γ 〉 = δα

β |γ 〉 , (4.18)

where |α〉 is | α̃〉 with Ã†
αk

replaced with A†
αk

, etc. Now (4.18) implies that A†
α and Aα act

as simple creation and annihilation operators on F , the subspace of singlet representations

of FTotal. For F we further have that

N̂AF = N̂F (4.19)

where N̂A = A†
αAα, so the two number operators agree on the reduced Fock space. Of

course A†
α and Aβ do not satisfy a Heisenberg algebra on the whole Fock space FTotal.

The spaces FL then can be identified as the space of vectors |α〉 satisfying the relations

Ĵ 
ı |α〉 = δ

ıN̂ |α〉 = Lδ
ı |α〉 and N̂A |α〉 = L |α〉 (4.20)

the first indicating the singlet nature of the state under u(N).

As before, a basis for FnL
⊗ F∗

nR
is given by |α〉 〈β | for all possible strings α =

(α1, . . . , αnL
) and β = (β1, . . . , βnR

) and the constructions of the previous section are

unchanged. As in (3.6), a general matrix takes the form

M =
1

L!
Mα1···αL

β1···βL
A†

α1
· · ·A†

αL
|0〉 〈0 |Aβ1 · · ·AβL . (4.21)

where the only distinction is that the oscillators aα are replaced by Aα. The derivatives

become

L̂a =

(
A†λa

2
A

)L

−
(

A†λa

2
A

)R

(4.22)
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and the Laplacian is now replaced by L̂2 as in section 2 which fixes the geometry to be

that of section 3.

Had we proceeded with a set of oscillators (a†)
ı
α, there would be the minor consequence

that FL would transform as the L-fold symmetric tensor product of the anti-fundamental

rather than of the fundamental, i.e. FL would carry the representation (0, 0, . . . , L) and

hence the coefficients in the matrix algebra Mα
β would be replaced by Mα

β, so that the

role of M would be replaced by that of M†.

5. Realization of the K̂ı and K̂ı̄

The natural generalization of (2.41) is now clear and we can define:

K̂ı := (A†
α)

L
((a†)

α
ı )

R
: FL ⊗F∗

L 7−→ FL+1 ⊗F∗
L−1,ı

K̂ı̄ := (Aα)L(aı
α)R : FL ⊗F∗

L 7−→ FL−1 ⊗F∗
L,̄ı

K̂0 := 1
2(N̂ L

A − N̂R) : FL ⊗F∗
L 7−→ 0 ,

(5.1)

where N̂A = A†
αAα and we have denoted the subspace of Fock space spanned by vectors of

the form

(a†)
α

ı A†
α1

. . . A†
αL

|0〉 (5.2)

by FL,ı = F ı̄
L . Note: Since (a†)

α
ı A†

α = 0 all contractions between the aı
α and the Aα vanish.

Observe that, quite generally, [K̂ı, K̂] = 0 = [K̂ı̄, K̂̄] and for a generic non-square

matrix Mq ∈ FnL
⊗ F∗

nR
with q = nL − nR, using equations (4.18) and (4.20) we can

evaluate the commutator

[K̂ı, K̂̄]Mq = A†
αAβMqa


β(a†)αı − AβA†

αMq(a
†)αı a

β

= A†
αAβMq[a


β , (a†)αı ] − MqĴ


ı

= 2δ
ı K̂0Mq = qδ

ıMq . (5.3)

So we have

[K̂ı, K̂̄]Mq = 2δ̄
ı K̂0Mq . (5.4)

In particular the algebra FL ⊗F∗
L is annihilated by [K̂ı, K̂̄], as expected for the action of

the holonomy group on functions.

The Laplacian, ∆K , acting on Mq constructed from the Kı and Kı̄, as demonstrated

below, is naturally given by

∆K =
1

2

(
K̂ıK̂ı̄ + K̂ı̄K̂ı

)
+

2N

N + 1
K̂2

0 . (5.5)

A little computation demonstrates that we can re-express ∆K in the form

∆K = (L̂L
a − ĴR

a )2 , (5.6)

where L̂a = A† λa

2 A and Ĵa = (a†)ı
λa

2 aı. Now it is easy to verify that for states |γ 〉 ∈ F

L̂a |γ 〉 = Ĵa |γ 〉 (5.7)
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and hence we have for MR ∈ FL ⊗F∗
R where R is any irreducible representation of u(N),

∆KMR = (L̂L
a − ĴR

a )
2
MR = (ĴL

a − ĴR
a )

2
MR , (5.8)

where (ĴL
a − ĴR

a )
2

is the su(N +1) quadratic Casimir and provides the natural Laplacian on

the entire space FTotal⊗FTotal∗. The eigenspaces of ∆K are the irreducible representations

in the decomposition of FL ⊗F∗
R and the eigenvalues are those of the su(N + 1) quadratic

Casimir in this representation.

Observe also that we can further generalize (5.4) to obtain

[K̂ı, K̂̄]MR = −MRĴ 
ı + δ

ıA
†
αAαMR = −MR(Ĵ 

ı − δ
ı N̂ ) + 2δ

ı K̂0MR , (5.9)

where Ĵ 
ı − δ

ı N̂ are the su(N) generators and K̂0 is the u(1) generator introduced above.

Hence the effect of the commutator action [K̂ı, K̂̄] on MR is that of a generator of the

representation R and it effects a rotation in R.

To obtain the spectrum of ∆K by direct computation, observe that

K̂ı |γ 〉 〈γ | = 0 and K̂ı̄ |γ 〉 〈γ | = 0 , (5.10)

which can be established by acting on |β,γ 〉 = 1√
L!

A†
βA†

γ1
· · ·A†

γL
|0〉,

K̂ı |β,γ 〉 〈γ, β | = A†
δA

†
β |γ 〉 〈γ | [Aβ, (a†)δi ] + A†

β(K̂ı |γ 〉 〈γ |)Aβ

= A†
β(K̂ı |γ 〉 〈γ |)Aβ .

using antisymmetry in equation (C.3) of appendix C and K̂ı |0〉 〈0 | = 0.

We can be more general and consider a non-square matrix made from a single polar-

ization tensor, i.e. ΦlL,lR = fα
β |αlL ,γ 〉 〈γ,βlR | where the coefficients fα

β are completely

traceless and the indices γk, with k = 1, . . . , nL − lL = nR − lR contracted. Then

K̂ı |α,γ 〉 〈γ,β | = A†
µA†

α1
· · ·A†

αlL
|γ 〉 〈γ | [Aβ1 · · ·AβlR , (a†)µi ] . (5.11)

Using (C.7) from appendix C and (4.17), we now find

K̂ı̄K̂ıΦlL,lR =

lR∑

k=1

fα
βAνA†

µ |α,γ 〉
(
〈γ,β | δµ

ν − 〈γ, β̂k |Aµδβk
ν

)

= lR(N+nL+1)ΦlL,lR−
lR∑

k=1

fα
β

(
δβk
µ |α,γ 〉+

nL−lL∑

i=1

δβk
γi

|µ,α, γ̂i 〉
)
〈γ, β̂k, µ |

= lR(lL + N)ΦlL,lR . (5.12)

Similarly,

K̂ıK̂ı̄ΦlL,lR = lL(lR + N)ΦlL,lR . (5.13)

In particular for square matrices with nL = nR = L and ll = lR = l,

1

2

(
K̂ıK̂ı̄ + K̂ı̄K̂ı

)
Yαl

βl = l(l + N)Yαl

βl , (5.14)
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where the polarization tensors are now built, as before, by projecting onto an irreducible

representation of su(N + 1), but states are built with the A†
α.

For non-square matrices we can use the polarization tensors (again built as before)

Dαl+q

βl and with the Laplacian (5.5) we have

∆KDαlL

βlR =
1

2

(
lL(lR + N) + lR(lL + N) +

N(lL − lR)2

(N + 1)

)
DαlL

βlR . (5.15)

Hence putting lR = l and q = lL − lR we agree with the spectrum (3.32) as derived earlier

in terms of the one oscillator formulation.

Finally we can map our modules to sections of equivariant vector bundles tensored

with functions8 using either ρL,q(z̄, z) or |z, nR〉〈nL, z| now built from pseudo creation and

annihilation operators. These will induce the mapping

(
1√
N̂A

A†
α

)L

7−→ z̄α

(
Aα

√
N̂A

)L

7−→ ∂

∂z̄α
(5.16)

(
Aα 1√

N̂A

)R

7−→ zα

(√
N̂AA†

α

)R

7−→ ∂

∂zα

as expected. For elements of more general modules, such as MR, one needs to introduce

commutative analogues of the aı
α. For these, we will introduce uı

α (see appendix B). By

following analogous constructions to those above, we can induce maps

((a†)
α

ı )
L 7−→ uα

ı and (aı
α)R 7−→ ūı

α

(aı
α)L 7−→ ∂

∂uα
ı

and ((a†)
α

ı )
R 7−→ ∂

∂ūı
α

(5.17)

modulo normalizations. Using appendix B we can identify the image of the operators.

Taking the adjoint of the MR gives us RM† ∈ FR⊗F∗
L. The natural operators acting

on these modules are ıK̂ and ı̄K̂ which are the adjoints of K̂ı̄ and K̂ı respectively. Explicitly

they are:

ıK̂ = ((a†)
α

ı )
L
(A†

α)
R

= (K̂ı̄)
†

and ı̄K̂ = (aı
α)L(Aα)R = (K̂ı)

†
(5.18)

One can then see that the pairings we consider to build our Laplacians arise naturally from

action functionals of the form

Tr

dN (R)

(
(K̂ıΨR)

†
K̂ıΦR + (K̂ı̄ΨR)

†
K̂ı̄ΦR

)
(5.19)

or
Tr

dN (nL)

(
K̂ıΨR(K̂ıΦR)

†
+ K̂ı̄ΨR(K̂ı̄ΦR)

†)
(5.20)

where ΨR and ΦR are elements of the module FL ⊗ F∗
R. We will leave the discussion of

action functionals and field theories to a separate publication.

8An alternative quantization of equivariant vector bundles using Toeplitz quantization can be found

in [47 – 49].
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6. Conclusions

In this paper, we have re-examined the construction of CP
N . The principal novelties of

the current work are:

• The introduction of the double vacuum representation which is used to obtain the

modules representing noncommutative complex line bundles. The double vacuum,

|0〉〈0| is inserted, between the creation and annihilation operators of a normal ordered

homogeneous polynomial in creation and annihilation operators.

• A construction of polarization tensors that maintains equivariance at every step and

renders the polarization tensors for non-square matrices very tractable and can be

readily generalized to a large class of spaces.

• We simplified the Laplacians acting on noncommutative line bundles.

• We introduced a symmetric symbol density to replace the coherent state map. This

density should have an interest beyond the current work and raises questions for the

future: Does this density map positive matrices to positive functions as the coherent

state map does?

• We found a new Fock space construction of CP
N . The construction allows us to

access all equivariant complex vector bundles over CP
N which are in one to one

correspondence with the representation ring of U(N) (see 237 H of the Encyclopedic

Dictionary of Mathematics, second edition [50]).

• We have found composite oscillators, Aα of eq. (4.16), that obey the Heisenberg

algebra on the reduced Fock space freely generated by these oscillators.

• Along the way we have found a natural generalization to su(N) of the Schwinger-

Jordan construction for su(2) that avoids multiplicities and has resonance with the

work of Chaturvedi et al [51, 52].

The work described here opens many additional directions for investigation. The

double Fock vacuum reformulation of CP
N has already led to a simplified version of the

star product [42]. The general approach taken here leads naturally to the construction of

all flag and superflag manifolds [53], where the algebra of functions is given by FR ⊗ F∗
R

with for example the representation R of u(k) on the left and the conjugate representation

R on the right realizing the algebra for the Grassmanian Grk;N+1.

Once it is appreciated that single oscillators can be replaced by composites, many

new possibilities emerge with consequences far beyond the current work. For example, the

construction should prove useful in describing quasi-holes and quasi-particles in the higher

dimensional quantum Hall effect [54 – 56, 15]. Closer to home, within the framework of

noncommutative geometry, for example, one can build additional structure into the Moyal

plane by taking determinant composite oscillators, A, of su(N), where

A = det(a)

√
N̂ !

(N̂ + N − 1)!
(6.1)
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and a is the matrix of oscillators aα
I and N̂ is the reduced number operator

N̂ =
(a†)

I
αaα

I

N
.

Many further generalizations are possible. The most obvious next step is the construction of

spinor fields and their associated action functionals. We will return to this in a subsequent

article [57].
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A. su(2) derivatives on S2

For notational convenience we label the columns and rows of the entries in the matrix

differently, as uα
I with I = 0, 1 and α = 1, 2, for future convenience. Thus

U =

(
u1

0 u1
1

u2
0 u2

1

)
∈ SU(2). (A.1)

Of course not all four entries are independent, we can write U as9

U =

(
z1 −z̄2

z2 z̄1

)
, (A.2)

where zα, satisfying z†z = 1, label points on S3 and project to coordinates on S2. An

alternative parameterisation is

U =

(
ū1

2 u1
1

−ū1
1 u2

1

)
(A.3)

with uα
0 = ǫαβ ū1

β, where ǫαβ = −ǫβα with ǫ12 = 1.

There are three linearly independent left vector fields on SU(2) ∼= S3 at U as well as

three linearly independent right vector fields, which we can choose to be generated by σa

2

where σa are the Pauli matrices, a = 1, 2, 3,

La(U) = −
(σa

2

)
U Ra(U) = U

(σa

2

)
. (A.4)

It is straightforward to write these as differential operators

−
(σa

2

)
U = −1

2

(
uβ

I

(
σa

)α

β

∂

∂uα
I

)
U, U

(σa

2

)
=

1

2

(
uα

I

(
σa

)I

J

∂

∂uα
J

)
U, (A.5)

9Indices are raised and lowered using the unitary metric on C
2, δαβ̄ or δαβ̄. Thus (zα) = (z̄)α = z̄α.

Similarly uα
I = ūᾱ

Ī
= ūI

α.
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where the partial derivatives are taken as though the uα
I were independent.10 These differ-

ential operators satisfy the su(2) algebra

[La,Lb] = iǫab
cLc, [Ra,Rb] = iǫab

cRc. (A.6)

In the alternative raising and lowering basis (2.6) where σ± = 1
2(σ1 ± iσ2) and σ0 =

1
2σ3, the right invariant vector fields can be written, using (z1, z2), as

L+ = −z2 ∂

∂z1
+ z̄1

∂

∂z̄2

L− = −z1 ∂

∂z2
+ z̄2

∂

∂z̄1
(A.7)

L0 = −1

2

(
z1 ∂

∂z1
− z2 ∂

∂z2

)
+

1

2

(
z̄1

∂

∂z̄1
− z̄2

∂

∂z̄2

)
.

These project trivially from S3 to the three linearly dependent Killing vector fields on

S2, since they are invariant under a phase change zα → eiφzα. Note that (A.7) decompose

into two mutually commuting copies of the SU(2) algebra,

L+ = L+ − L− L− = L− − L+ L0 = L0 − L0, (A.8)

where

L+ = −z2 ∂

∂z1
, L− = −z1 ∂

∂z2
, L0 = −1

2

(
z1 ∂

∂z1
− z2 ∂

∂z2

)
, (A.9)

associated with holomorphic and anti-holomorphic vector fields on CP
1. The right vector

fields on SU(2)

R+ = −z1 ∂

∂z̄2
+ z2 ∂

∂z̄1
= −ǫαβ ū1

α
∂

∂uβ
1

R− = −z̄2
∂

∂z1
+ z̄1

∂

∂z2
= ǫαβuα

1

∂

∂ū1
β

(A.10)

R0 =
1

2

(
zα ∂

∂zα
− z̄α

∂

∂z̄α

)
=

1

2

(
ū1

α

∂

∂ū1
α

− uα
1

∂

∂uα
1

)

do not project to vector fields on S2, rather R+ maps functions to (0, 1) tensors and R−
maps functions to (1, 0) tensors, while R0 generates tangent space rotations at any point

on S2 that leave functions invariant, i.e. it generates the holonomy group U(1) at the point

zα of S2. Nevertheless the Laplacian acting on functions on CP
1 can be written either in

terms of the left or the right vector fields,

−∇2 =
1

2
(L+L− + L−L+) + L2

0 =
1

2
(R+R− + R−R+) + R2

0

= −∂.∂̄ +
1

2
(z.∂)(z̄.∂̄) +

1

4
(z.∂)(z.∂ + 2) +

1

4
(z̄.∂̄)(z̄.∂̄ + 2), (A.11)

where z.∂ = zα ∂
∂zα .

10In our notation, the entries of σa are necessarily labeled differently for the right and left invariant vector

fields. This is an advantage of the notation in that it is clear from the index structure which is left and

which is right acting.
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B. Left and right SU(N + 1) invariant derivations on CPN

Once we have mapped our modules to a representation in terms of zα and uα
ı we have the

following realization.

A parameterisation of an element U of G = SU(N + 1) can be given by

U =




u1
0 u1

1 · · · u1
N

u2
0 u2

1 · · · u2
N

...
...

...
...

uN+1
0 uN+1

1 · · · uN+1
N




(B.1)

where

ūI
αuβ

I = δβ
α, ūI

α · uα
J = δI

J and ǫα1···αN+1
uα1

0 uα2

1 · · · uαN+1

N = 1 (B.2)

with I, J = 0, 1, . . . N and αr = 1, . . . , N + 1 for r = 1, . . . , N + 1.

Acting with G = SU(N + 1) on SU(N + 1) we find that the induced left and right

vector fields are given by

La = −1

2
uβ

I

(
λa

)α

β

∂

∂uα
I

and Ra =
1

2
uα

I

(
λa

)I

J

∂

∂uα
J

, (B.3)

respectively, where λa

2 are the generators of SU(N + 1) in the fundamental representation.

An alternative basis, using raising and lowering operators and the Cartan subalgebra, is

obtained from the completeness relation (3.9) giving

Lα
β = −uα

I
∂

∂uβ
I

+

(
δα

β

N + 1

)
uγ

I

∂

∂uγ
I

(B.4)

RI
J = uα

J

∂

∂uα
I

−
(

δI
J

N + 1

)
uα

K

∂

∂uα
K

. (B.5)

The differential operators Lα
β and RI

J separately satisfy the commutation relations of

su(N + 1), without recourse to (B.2), and commute with each other.

The coset space U(N + 1)/U(N) = S2N+1 can be realized by embedding U(N) in

U(N + 1) as (
eiθ 0

0 h

)
(B.6)

and taking coordinates on S2N+1 as the first column of (B.1). Restricting to functions

xa = z̄λaz projects S2N+1 to functions on CP
N . Special unitarity of U implies that

zα := uα
0 = ǫαβ1···βN ū1

β1
· · · ūN

βN
=

1

N !
ǫαβ1···βN ǫı1···ıN ūı1

β1
· · · ūıN

βN
(B.7)

and is consistent with (B.2).

An equivalent description is to use

zα = (z̄)α := ū0
α = ǫαβ1···βN

uβ1

1 · · · uβN

N =
1

N !
ǫαβ1···βN

ǫı1···ıN uβ1
ı1 · · · uβN

ıN
, (B.8)

– 25 –



J
H
E
P
0
7
(
2
0
0
7
)
0
0
7

where uα
ı , with ı = 1, . . . , N , represent N mutually orthogonal unit vectors in C

N+1 so

z̄α is a hyperplane in C
N+1: the set of all hyperplanes is the Grassmanian GrN ;N+1

∼=
Gr1;N+1 = CP

N and provides an equivalent construction of CP
N [58] and it is essentially

the fuzzy version of the latter that has been provided in section 4. The uα
ı transform as a

anti-fundamental representation of SU(N) on the index ı and a fundamental of SU(N + 1)

on the index α while ūı
α transform as the corresponding conjugate representations.

We would like to write the left vector fields in (B.4) solely in terms of zα. To this end,

observe that

−
(

ūı
β

∂

∂ūı
α

− δα
β

N + 1
ūı

δ

∂

∂ūı
δ

)
zγ =

(
zα ∂

∂zβ
− δα

β

N + 1
zδ ∂

∂zδ

)
zγ (B.9)

and the derivatives annihilate uα
ı when ı = 1, . . . , N . So we decompose I into 0 and

ı = 1, . . . , N and write the left vector fields in equation (B.4) as

Lα
β =

(
ūı

β

∂

∂ūı
α

− δα
β

N + 1
ūı

γ

∂

∂ūı
γ

)
−

(
uα

ı

∂

∂uβ
ı

− δα
β

N + 1
uγ

ı

∂

∂uγ
ı

)

= −
(

zα ∂

∂zβ
− δα

β

N + 1
zδ ∂

∂zδ

)
+

(
z̄β

∂

∂z̄α
− δα

β

N + 1
z̄δ

∂

∂z̄δ

)
. (B.10)

This last form clearly projects trivially to CP
N and, as for CP

1, decomposes into mutually

commuting holomorphic and anti-holomorphic parts,

Lα
β = Lα

β − Lβ
α , (B.11)

where

Lα
β = −zα ∂

∂zβ
+

δα
β

N + 1
zδ ∂

∂zδ
. (B.12)

The Laplacian is

−∇2 =
1

2
Lα

βLβ
α (B.13)

= −∂.∂̄ +
1

N + 1
(z.∂)(z̄.∂̄) +

N

2(N + 1)

{
(z.∂)(z.∂ + N + 1) + (z̄.∂̄)(z̄.∂̄ + N + 1)

}
.

For the left invariant generators of G that are not in H, we have

Rı̄ := Rı
0 = zα ∂

∂uα
ı

, Rı := R0
ı = uα

ı

∂

∂zα
, (B.14)

so the N2 generators of H = U(N) are

[Rı,R̄] = uα
ı

∂

∂uα


− δ
ız

α ∂

∂zα
= R

ı −
δ

ı

N + 1

(
Nzα ∂

∂zα
− uα

k

∂

∂uα
k

)
. (B.15)

The commutator [Rı,R̄] generates the holonomy group of tangent space rotations, and so

vanishes on functions f(z̄, z) on CP
N as can be seen by noting that (B.7) gives

uα
ı

∂

∂uα


z̄β = δı
z̄β = δı

z̄δ
∂

∂z̄δ
z̄β (B.16)
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so

[Rı,R̄]f(z̄, z) = δı


(
zα ∂

∂zα
− z̄α

∂

∂z̄α

)
f(z̄, z) = 0 (B.17)

as required.

One can write Rı and Rı̄ differently noticing that, when acting on elements of the

matrix U ,
∂

∂uα
0

=
∂

∂zα
=

ǫαβ1···βN

N !

ǫı1···ıN

N !

∂

∂ūı1
β1

· · · ∂

∂ūıN
βN

, (B.18)

since this gives ∂
∂zα zβ = δα

β and ∂
∂zα uβ

ı = 0. Thus

Rı = ǫαβ1···βN ū1
β1

· · · ūN
βN

∂

∂uα
ı

(B.19)

Rı̄ =
1

N !
ǫαβ1···βN

uα
ı

∂

∂ū1
β1

· · · ∂

∂ūN
βN

though, in contrast to the case of CP
1 in (A.10), these forms are only valid for expressions

that are linear in zα; a problem that will be considered in detail and rectified in the Fock

space construction of appendix C.

C. Recovering the Heisenberg Algebra

The annihilation and creation operators aı
α and (aı

α)† = (a†)αı satisfy

[aı
α, (a†)β ] = δı

δ
β
α, (C.1)

with ı = 1, . . . , N an SU(N) index and α = 1, . . . , N + 1 an SU(N + 1) index. We defined

composite operators as singlets of su(N) by

(Ãα)† = Ã†
α :=

1

N !
ǫı1···ıN ǫαθ1···θN

(a†)θ1
ı1 · · · (a†)θN

ıN . (C.2)

These operators enjoy the following commutation relations:

[a
β, Ã†

α] =
1

(N − 1)!
ǫαβθ2···θN

ǫı1···ıN−1(a†)θ2
ı1 · · · (a†)θN

ıN−1
, (C.3)

with [
N̂ , Ã†

α

]
= Ã†

α , (C.4)

where

N̂ =
1

N
(a†)αı aı

α (C.5)

is the reduced number operator and Ãα has unit charge for the U(1) associated with this

generator. Furthermore

(a†)γı [a
γ , Ã†

α] = δ
ı Ã

†
α , i.e.

[
Ĵ 

ı − δ
ıN̂ , Ã†

α

]
= 0 (C.6)
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reflects the fact that Ãα is an su(N) singlet and

(a†)γ [a
β, Ã†

α] = δγ
βÃ†

α − δγ
αÃ†

β or
[
Ĵγ

β, Ã†
α

]
= δγ

βÃ†
α − δγ

αÃ†
β (C.7)

demonstrates that Ã†
α transforms as the fundamental of u(N + 1). Also defining the su(N)

singlet states | α̃〉 and |α̃k 〉 as in (4.12) we therefore have

Ĵ 
ı | α̃〉 = δ

ı N̂ |α̃〉 and

Ĵγ
β | α̃〉 = Lδγ

β |α̃〉 −
L∑

k=1

Ã†
βδγ

αk
| α̃k 〉 . (C.8)

Let us now consider the algebra of Ãα and Ã†
β . Define

Dν
µ(p) := D

ν1···νp
µ1···µp :=

N∑

ı1···ıpdistinct

(a†)ν1
ı1 aı1

µ1
· · · (a†)νp

ıp a
ıp
µp .

First observe the lower and upper extreme cases:

Dν
µ(1) = (a†)

ν

ı a
ı
µ = Ĵν

µ ,

are the generators of U(N + 1) and

δαµ
βν Dν

µ(N) = N !Ã†
βÃα ,

where δαµ
βν is the p + 1-delta symbol, the p-delta symbol being defined via

ǫα1···αpγp+1···γN+1ǫβ1···βpγp+1···γN+1
= (N + 1 − p)!δ

α1···αp

β1···βp
(C.9)

and explicitly

δ
α1···αp

β1···βp
= δα1

β1
δα2

β2
. . . δ

αp

βp
− δα1

β2
δα2

β1
. . . δ

αp

βp
+ . . . (C.10)

with p! terms.

Now separating Ĵ
νp+1

µp+1
= (a†)

νp+1

ı aı
νp+1

as

Ĵ
νp+1

µp+1
= (a†)

νp+1

ı1 aı1
µp+1

+ · · · (a†)νp+1

ıp a
ıp
µp+1

+
∑

ıp+1 /∈{ı1,...,ıp}
(a†)

νp+1

ıp+1
a

ıp+1

µp+1
(C.11)

and substituting into

δ
αµ1···µpµp+1

βν1···νpνp+1
D

ν1···νp
µ1···µp Ĵ

νp+1

µp+1
(C.12)

we see that due to antisymmetry of the p-delta symbol we have

δ
αµ1···µpµp+1

βν1···νpνp+1
(a†)ν1

ı1 aı1
µ1

· · · (a†)νp
ıp a

ıp
µj

(
(a†)

νp+1

ık
aık

µp+1
+ δ

νp+1

µp+1

)
= 0 (C.13)

for k = 1, 2, . . . , p and so we obtain the recursion relation

δαµ
βν Dν

µ(p + 1) = δ
αµµp+1

βννp+1
Dν

µ(p)
(
pδ

νp+1

µp+1
+ Ĵ

νp+1

µp+1

)
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which gives

Ã†
βÃα =

1

N !
δαµ
βν

N∏

p=1

(
(p − 1)δ

νp
µp + Ĵ

νp
µp

)
. (C.14)

Similarly defining Dν
µ by interchanging the roles of creation and annihilation operators

in Dµ
ν , one obtains the recursion relation

δαµ
βν Dν

µ(p + 1) = δ
αµµp+1

βννp+1
Dν

µ(p)
(
(N − p)δ

νp+1

µp+1
+ Ĵ

νp+1

µp+1

)
. (C.15)

With the initial condition

Dν
µ(1) = Ĵν

µ + Nδν
µ , (C.16)

iterating (C.15) yields

ÃαÃ†
β =

1

N !
δαµ
βν

N∏

p=1

(
pδ

νp
µp + Ĵ

νp
µp

)
. (C.17)

Thus we have that Ã†
αÃα and ÃαÃ†

α can be expressed as polynomials in the Casimirs of

u(N + 1) up to CN .

Furthermore, the commutator is

[Ãα, Ã†
β] =

1

(N − 1)!
δαµ
βν

N−1∏

p=1

(
pδ

νp
µp + Ĵ

νp
µp

)
δνN
µN

,

and the commutator is a polynomial in the Casimirs, Ci, of u(N + 1) up to CN−1.

We can use this result to determine how Ãα behaves on the reduced Fock space |γ 〉.
We contract all Ã†

α with an arbitrary vector xα to obtain X = xαÃ†
α. Then,

Ãα |XL 〉 =
xβ

N !
δαµ
βν

N∏

p=1

(
pδ

νp
µp + Ĵ

νp
µp

)
|XL−1 〉 . (C.18)

Next, we use (C.7) to see that

[Ĵν
µ − δν

µN̂ ,X] = −xνÃ†
µ , (C.19)

which allows us to substitute for Ĵν
µ in (C.18); then observing that the contribution from

the right hand side of (C.19) gives zero, due to antisymmetrization of xµ with xβ, we have

that Ĵν
µ is replaced with N̂ δν

µ when acting on |XL−1 〉 in (C.18) so that

Ãα |XL 〉 =
xβ

N !
δαµ
βν

N∏

p=1

(
(p + N̂ )δ

νp
µp

)
|XL−1 〉 = xα (N̂ + N)!

N̂ !
|XL−1 〉 . (C.20)

Taking L derivatives with respect to xγ we find

Ãα |γ 〉 =
(L + N − 1)!

L!

L∑

i=1

δα
γi
| γ̂i 〉 . (C.21)
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Now defining

Aα := Ãα

√
N̂ !

(N̂ + N − 1)!
(C.22)

we have, when acting on states |γ 〉 of the reduced Fock space,

A†
αAα |γ 〉 = N̂ |γ 〉 (C.23)

and

[Aα, A†
β] |γ 〉 = δα

β |γ 〉 . (C.24)

Hence we find that Aα and A†
β obey the Heisenberg Algebra.

From the above we can write

A†
βAα = N̂ 1

N !
δαµ
βν

N−1∏

p=0

(
p + Ĵ

p + N̂

)νp

µp

(C.25)

and

AαA†
β = (N̂ + 1)

1

N !
δαµ
βν

N∏

p=1

(
p + Ĵ

p + N̂

)νp

µp

(C.26)

so that

[Aα, A†
β ] =

1

N !
δαµ
βν

N−1∏

p=1

(
p + Ĵ

p + N̂

)νp

µp

(
N(N̂ + 1) + (1 − N)Ĵ

N + N̂

)νN

µN

. (C.27)

Also observe that (C.8) becomes

(Ĵγ
β + Ã†

βÃγ) | α̃〉 = N̂ δγ
β |α̃〉 . (C.28)
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[38] P. Prešnajder, The origin of chiral anomaly and the noncommutative geometry, J. Math.

Phys. 41 (2000) 2789 [hep-th/9912050].

[39] A.M. Perelomov, Generalized coherent states and their applications, Springer-Verlag (1986).

[40] F.A. Berezin, Quantization in complex symmetric spaces, Izvestija 9 (1975) 341.
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